

Theme: Physics, Abstract No: PTCOG-AO2025-ABS100

Evaluation of Secondary Neutron Characteristics in FLASH Proton Therapy

<u>Se Byeong Lee^{1,*}(sblee@ncc.re.kr),</u> Chae-Eon Kim^{1,2}, Dongho Shin¹, Sung Hun Kim¹, Dong-Seok Shin¹, Sang-il Pak³, Yoonsun Chung²

- ¹ Proton Therapy Center, National Cancer Center Korea, Korea
- ² Department of Nuclear Engineering, Hanyang University, Korea
- Department of Radiation Oncology, Pusan National University Yangsan Hospital, Korea

Background and Aim

FLASH proton therapy

Using transmission technique with high energy proton beams (> 200 MeV)

In this study, to address challenges in https://www.new.numan.safety and facility management,

- 1. Evaluating neutron characteristics under FLASH conditions
- 2. Comparing beam stopper and shielding materials to assess shielding effectiveness

Subject and Methods

Experimental setup

- Beam information228 MeV of single Bragg peak beam200 nA of cyclotron current
 - → ~ 67Gy/s @Advanced Markus chamber
- Measurement setup

Solid water phantom with Advanced Markus

Beam stoppers: water, brass, concrete

Sheilding materials: HDPE, BPE

Detector: AT117M (ATOMEX, Belarus)

<u>0.024 eV – 14 MeV</u>

Simulation setup

Tool for Particle Simulation (TOPAS) v 3.9

108 of primary particles

Physics: default setting for proton therapy

Fig1. Beam profile of FLASH proton beam

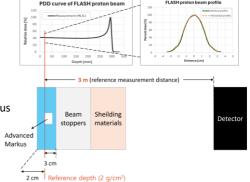


Fig2. Measurement setup scheme

 $\label{fig3.} \textbf{Fig3. Simulation setup for FLASH proton beamline}$

Results

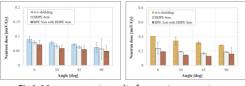
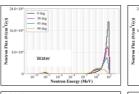
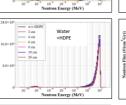
Angular dependency of secondary neutrons **Brass**: Higher neutron yield at 0.01 -10 MeV

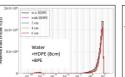
→ resulting in a higher H*(10) than water

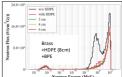
HDPE/BPE: effectively attenuated neutron

→ showing similar shielding performance

7 Showing Similar Sineraing performance


Fig4. Measurement results for neutron spectrum → Fig5. Simulation results for neutron spectrum →


This study was supported by the National Cancer Center Research Grant 241095-2.

